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a b s t r a c t 

Identifying time-lag between two hydrogeological time series for planning and management of water resources 

has a long history and is of continuing research interest. Many hydrogeological studies in the past have used 

visual inspection and cross-correlogram techniques for quantifying the time lag. Cross-correlogram techniques, 

if not done under the transfer function framework, could lead to ambiguous results. In order to conduct cross- 

correlogram analysis under the transfer function framework, careful pre-processing steps have to be undertaken, 

which are often ignored in practice. In this paper, we propose a new approach to compare two sets of hydrogeo- 

logical time series data using the visibility graph algorithm and show the advantages of using the new approach 

over the traditional approach. Application of the new approach is demonstrated by assessing the lags between 

rainfall and water level fluctuation in Lake Okeechobee, Florida. We also present simulation studies to better 

understand the performance of the method for different sample sizes, different underlying models and in the 

presence of missing values. 
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. Introduction 

Long term planning of water resources often requires an understand-
ng of time lag between a precipitation event and corresponding water
evel or flow response in a lake, stream, or an aquifer. Considering
recipitation events are the primary source of recharge for groundwater
nd surface water resources, it is critical from an operational standpoint
o quantify the time lag and responses due to precipitation in these
ater bodies, especially for lakes whose levels are artificially controlled

or flood management and other ecological reasons. 
Although existence of time lag between precipitation events and

ater level responses is supported by empirical data, quantitative
ssessments of time lags are typically done by visual inspection on
 graphical plot (e.g. Westoff et al., 2010 ) or using cross-correlation
echniques (e.g. Levanon et al., 2016 ). Cross-correlation method,
lthough useful in many cases, could lead to ambiguous results if not
one under the transfer function framework. If cross-correlation is
one under the transfer function framework, certain assumptions (such
s joint bivariate stationarity of the two-time series) have to be met
 Wei, 2006; Box et al., 2008 ). The method also requires diagnostic
hecking for model adequacy, which is rarely done in practice. In this
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aper, we present a non-parametric method to quantify the time lag
sing a simple adaptation of the visibility graph algorithm (VGA).
his algorithm converts a time series into a graph. Although origi-
ally developed by physicists ( Lacasa et al., 2008; Lacasa and Luque,
010; Nuñez et al., 2012 ), it has found wide applications outside the
hysics literature. In our adaptation, we consider one of the time series
e.g. water levels) as a reference time series and create time shifted
opies of the other time series of interest (e.g. precipitation). The
ime series (original, copies and the reference) are then converted to
raphs and their corresponding adjacency matrices calculated using
GA, and then compared. The VGA method is described in detail in
ection 2 . 

.1. Data selection 

To illustrate the VGA based approach, we compiled long-term
ydrological time series data, which include water level data of a
urface water reservoir and corresponding precipitation data from
earby stations. The criteria used for data selection was that the time
eries should have quality continuous data without gaps and real world
nvironmental or anthropogenic significance. 
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Fig. 1. Map showing the locations of Lake Okeechobee, and the Saint Lucie and the Caloosahatchie estuaries, obtained from http://nationalmap.gov . 
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The surface water reservoir lake selected for analysis is Lake Okee-
hobee, which is the second largest natural freshwater lake within the
ontiguous United States, covering approximately 730 square miles.
he primary inflows into the lake are Kissimmee River and Taylor Creek

ocated north of the lake, Fisheating Creek located west of the Lake,
nd the primary outflows are the Everglades, Caloosahatchee River
nd the St. Lucie River ( Fig. 1 ). Water flowing in and out of the lake
s controlled by human decisions which includes determining the time
nd frequency of opening and closing of numerous gates and locks. The
outh Florida Water Management District (SFWMD) and the US Army
orps of Engineers (USACE) jointly operate the lake’s water control
tructures to achieve water levels in Lake Okeechobee that balance
ater supply, flood protection, and environmental health ( Audobon
lorida Naturalist Magazine,Fall, 2005a; Audobon Florida Naturalist
agazine,Writer, 2005b ). The Comprehensive Everglades Restoration

lan (CERP) identifies ideal Lake Okeechobee water level range to be
etween 12 feet NGVD (at the end of dry season) and 15 feet NGVD (at
he end of wet season). Any rise in lake level exceeding 18.5 feet NGVD
ay compromise the structural integrity of the Herbert Hoover Dike

urrounding the lake; hence, as lake levels approach 17 feet NGVD,
arge freshwater discharges are made to the St.Lucie estuary to the east
nd Caloosahatchee Estuary to the west disrupting the natural salinity
atterns and water chemistry of these estuaries and impacting its flora
nd fauna. Lake levels going below 12 feet NGVD can cause water
hortages especially during drought years. 

. Method 

Let us denote the two hydrogeological time series that we are
nterested in, namely precipitation and water levels, by P ( t ) and WL ( t )
or simply P and WL ), respectively. In order to find the time lag
etween the two time series, as a first step we fix one of the series, say
L , and obtain time-shifted copies of the other series, 𝑃 𝜏1 , … , 𝑃 𝜏𝜅

. The
ey step in our methodology is the conversion of all the above time
eries into graphs based on the visibility graph algorithm. Graphs are
athematical constructs that are used to study relationships among

arious objects. In graph models the objects of interest are modeled as
odes or vertices and the relationships among the objects are modeled
sing edges or lines connecting the vertices. 

Visibility graph algorithm (VGA) ( Lacasa et al., 2008; Lacasa and
uque, 2010; Nuñez et al., 2012 ) is a method that extends usefulness of
he techniques and focus of mathematical graph theory to characterize
ime series. It has been shown that the visibility graph inherits several
roperties of the time series, and its study reveals nontrivial information
bout the time series itself. VGA has become very popular [e.g. Xu
t al., 2008; Marwan et al., 2009; Donner et al., 2010; Luque et al.,
009; Ahmadlou et al., 2010; Gao et al., 2015; Ahmadlou et al., 2012;
lsner et al., 2009; Zhu et al., 2014; Yang et al., 2009; Donges et al.,
012; Donner and Donges, 2012; Zhang, 2017 ] and has found wide
pplications outside the physics literature as evidenced by the > 700
itations of the original paper. The applications have ranged from
ealth applications related to Alzheimer’s disease ( Ahmadlou et al.,
010 ), Autism disorders ( Ahmadlou et al., 2012 ) and sleep studies
 Zhu et al., 2014 ) to geophysical studies ( Donner and Donges, 2012 )
uch as hurricanes ( Elsner et al., 2009 ), to financial applications
 Yang et al., 2009 ). However, to the best of our knowledge, our paper
s the first paper in which VGA has been used for time lag detection. 

Fig. 2 top panel illustrates how the visibility algorithm works. The
ime series plotted in the upper panel is an approximate sine series;
pecifically, a sine series with Gaussian white noise added. The values
t 24 time points are plotted as vertical bars. One may imagine these
ertical bars as, for example, buildings along a straight line in a city
andscape (i.e. a city block). Each node in the associated visibility graph
shown in the bottom panel) corresponds to each time point in the
eries. So, the graph in Fig. 2 has 24 nodes. We draw a link or an edge
etween a pair of nodes, say t i and t j , if the visual line of sight from the

http://nationalmap.gov
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Fig. 2. A time series and the corresponding visibility graph. t 1 , t 2 etc. denote the time points as well as the corresponding nodes in the visibility graph. 
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op of the building (vertical bar) situated at t i towards the top of the
uilding/bar at t j is not blocked by any intermediate buildings - that is,
f we were to draw a line from the top of the vertical bar at t i to the top
f the vertical bar at t j , it should not intersect any intermediate vertical
ars. Visibility lines corresponding to the edges in the graph are plotted
s dotted lines in the figure in the upper panel. For example, there is
o edge between t 2 and t 4 since the line of sight (not shown) between
he top points of the vertical bars at these two time points is blocked
y the vertical bar at t 3 . On the other hand, there is an edge between
 1 and t 3 since the corresponding visibility line (shown as a dotted line)
oes not intersect the vertical bar at t 2 . 

More formally, the following visibility criteria can be established:
wo arbitrary data values ( t q , y q ) and ( t s , y s ) will have visibility, and
onsequently will become two connected nodes of the associated graph,
f any other data ( t r , y r ) placed between them fulfills: 

 𝑟 < 𝑦 𝑠 + ( 𝑦 𝑞 − 𝑦 𝑠 ) 
𝑡 𝑠 − 𝑡 𝑟 

𝑡 𝑠 − 𝑡 𝑞 
. 

This simple intuitive idea has been proven useful practically because
f certain features exhibited by the graphs generated by this algorithm.
irst of all they are connected, since each node is connected to at least
ts neighbors. Secondly, there is no directionality between the edges, so
hat the graph obtained is undirected. In addition, the visibility graph
s invariant under rescaling of the horizontal and vertical axes and
nder horizontal and vertical translations. In other words, the graph is
nvariant under affine transformations of the original time series data. 

In mathematical notation any graph with n nodes could be repre-
ented by its n × n adjacency matrix A which consists of 0’s and 1’s. The
 i, j )th element of A is 1 if there is an edge connecting the i th and the
 th node, 0 otherwise. Two graphs, G 1 and G 2 , can be be compared by
he metric “distance ”, ‖𝐴 𝐺 1 

− 𝐴 𝐺 2 
‖2 between their corresponding adja-

ency matrices, 𝐴 𝐺 1 
and 𝐴 𝐺 1 

. Here, ‖ · ‖2 , called the Frobenius norm of a
atrix, is the square root of the sum of the squares of the elements of the
atrix; that is, the square root of the trace of the product of the matrix
ith itself. In mathematical notation, if D denotes the matrix 𝐴 𝐺 1 

− 𝐴 𝐺 2 
nd D ij the ij th element of D (with 𝑖, 𝑗 = 1 , … , 𝑇 ), then 

𝐴 𝐺 1 
− 𝐴 𝐺 2 

‖2 = ‖𝐷‖2 = 

√
Trace ( 𝐷 𝐷 

𝑡 ) = 

√ √ √ √ √ 

𝑇 ∑
𝑖 =1 

𝑇 ∑
𝑗=1 

𝐷 

2 
𝑖𝑗 
. 
Our proposed method to assess the time lag between the two hy-
rogeological time series P and WL using the visibility graph approach
s as follows: Convert the WL time series into a visibility graph and
btain its corresponding adjacency matrix, A WL . Consider time-shifted
opies of the P time series, 𝑃 𝜏1 , … , 𝑃 𝜏𝜅

, each shifted in time by a lag
rom the set { 𝜏1 , … 𝜏𝜅} . Convert these time-shifted copies of P into
heir visibility graphs and obtain the corresponding adjacency matrices
 𝑃 𝜏1 

, … , 𝐴 𝑃 𝜏𝜅
. We determine the copy 𝐴 𝑃 𝜏𝑠 

for which the Frobenius

orm ‖𝐴 𝑊 𝐿 − 𝐴 𝑃 𝜏𝑠 
‖2 is minimized. The time lag between the two

riginal hydrogeological series is then taken as 𝜏s . 
We further illustrate our method using the plots in Fig. 3 . The time

eries in the top panel, ts.a is a series of 50 values approximately based
n a sine function (that is, a sine series with some white noise added) 

𝑠.𝑎 [ 𝑡 ] = 100 sin (2 𝜋𝑓𝑡 ) + 𝑤 𝑡 , where 𝑓 = (80∕1000) , 𝑤 𝑡 ∼ 𝑁(0 , 25 2 ) . 

The time series, ts.b , plotted in the middle panel of Fig. 2 is derived
rom ts.a as follows: 

𝑠.𝑏 [ 𝑡 ] = (1∕3) 𝑡𝑠.𝑎 [ 𝑡 − 2] + 𝑒 𝑡 , where 𝑒 𝑡 ∼ 𝑁(0 , 5 2 ) . 

That is, ts.b is derived by shifting ts.a to the right by two units,
y reducing the amplitude to one-third that of ts.a , and adding some
hite noise. In other words, ts.a and ts.b have roughly the same shape
lthough their amplitudes are different and one is shifted by two time
nits relative to the other as seen in the figure. One may think of ts.a
nd ts.b as two time series one affecting the other (since, ts.b is shifted
o the left, physically we would think of ts.b affecting ts.a ); e.g. ts.b
s precipitation and ts.a as water levels. Physically, water levels and
recipitation never take negative values; so, if one really wants to think
f ts.a and ts.b as water levels and precipitation, one could think of
hem as mean-subtracted and scaled appropriately. 

We considered time-shifted copies of ts.b with time-shifts from the
ollowing set: {0 , 1 , 2 , … , 20} . VGA was applied and adjacency matrices
or the corresponding graphs were obtained. Distance-measure based
n the Frobenius norm for the time-shifted copies of ts.b compared
o the reference ts.a , are plotted in the bottom panel of Fig. 2 . The
istance-measure is minimized at 2, which was the lag that we set a
riori . Thus, in this illustrative example, the lag was correctly identified
y the method that we proposed. 
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Fig. 3. Illustration of our method. Top two panels show time series, one shifted by a lag of two from the other. Bottom panel shows the distance-measure based on 

Frobenius norm for different time lags; minimum is achieved for the time lag 2. 
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. Comparison with existing method 

Currently existing method for detecting lags between two time series
s based on cross-correlograms. Often in practice, cross-correlograms
re applied to the original two time series and lag is determined as the
oint corresponding to the peak (maximum positive or maximum neg-
tive) correlation. However, this approach could lead to ambiguities,
nd is not the best recommended approach from a statistical point of
iew. A better approach involves a pre-processing step which assures
hat the two time series used in the cross-correlogram analysis are both
tationary and white noise. The justification for this pre-processing step
an be understood under the transfer function framework. Consider
wo time series y t and x t , with y t affected by lagged values of x t . The
elationship between the two series may be modeled under the transfer
unction framework as 

 𝑡 = 𝜈( 𝐵) 𝑥 𝑡 , where 𝜈( 𝐵) = 

∞∑
𝑗=0 

𝜈𝑗 𝐵 

𝑗 . 

ere B denotes the back-shift operator 𝐵 

𝑗 𝑥 𝑡 = 𝑥 𝑡 − 𝑗 ; 𝜈( B ) is referred to
s the transfer function. For finite samples from real-life examples a
ational form is assumed for 𝜈( B ): 

( 𝐵 ) = 

𝜔 ( 𝐵 ) 𝐵 

𝑏 

𝛿( 𝐵 ) 
. (1)

ere 𝜔 ( · ) and 𝛿( · ) are polynomial functions with finite number of non-
ero coefficients and b represents the actual lag between the two series.
ur main goal is to estimate b - the time delay. Rewriting Eq. (1) as 

( 𝐵 ) 𝜈( 𝐵 ) = 𝜔 ( 𝐵 ) 𝐵 

𝑏 

nd expanding we will see that 𝜈𝑗 = 0 for 𝑗 = 0 , … , 𝑏 − 1 and 𝜈j ≠0 for
 = 𝑏 . Thus, in this framework, b is determined as the index of the first
on-zero coefficient 𝜈j . The above procedure is easy if there is a way
o estimate the coefficients 𝜈j ’s. As described below, cross-correlations
rovide a way to estimate the coefficients 𝜈j ’s. 
Cross-correlation between the two series at lag k is defined as 

𝑥𝑦 ( 𝑘 ) = 

𝛾𝑥𝑦 ( 𝑘 ) 
𝜎𝑥 𝜎𝑦 

, 

here 𝛾xy ( k ) is the cross-covariance between x t and y t , 𝜎x and 𝜎y are
tandard deviations of x t and y t respectively. If the following two con-
itions 

(C1): x t and y t are jointly bivariate stationary, 
(C2): x t is white noise series 

re simultaneously met, then there exists a scaled relationship between

k and 𝜌xy ( k ): 

𝑘 = 

𝜎𝑦 

𝜎𝑥 

𝜌𝑥𝑦 ( 𝑘 ) . (2)

hus, if C1 and C2 are met, then based on Eq. (2) we may determine
hich coefficients 𝜈j are zero and which are non-zero; this in turn will
elp us to determine the lag b . Putting it all together, we may summarize
hat if conditions C1 and C2 are met, then the lag b is the index of the first
tatistically non-zero cross-correlation term. In other words, we may use
 cross-correlogram to determine the lag. 

The key point here is that the conditions C1 and C2 have to be
et in order to apply the cross-correlogram method. C1 and C2 are

imultaneously met if both y t and x t are white noise series. One way
o assure this in practice is to fit appropriate models (AR, MA, ARMA
r ARIMA) separately to x t and y t and use the corresponding residuals
o plot the cross-correlogram because if the fitted model is accurate
hen the residuals are white noise. This necessitates an extra step in the
rocess: considering several models for x t and y t and fitting the most
ppropriate model - at least appropriate enough to generate white noise
s residuals. This key step (known as pre-whitening x t and y t ) is often
gnored in practice when cross-correlograms are used, which in turn
ould lead to erroneous conclusions. One advantage of using the VGA
ased method proposed in this paper is that the pre-whitening step is
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Fig. 4. Panel (a): CCF of original pair of time series. Panel (b): CCF of differenced pair of time series. Panel (c): Frobenius norm from VGA based method. 
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ot necessary for the new method. We illustrate all the above concepts
sing the following simulated example. 

We simulated x t from a ARIMA (1,1,0) model; that is, one AR
oefficient, one degree of differencing and no MA coefficients. AR
oefficient was set to 0.7. The sample size was 75. y t was generated as 

 𝑡 = 16 + 0 . 85 𝑥 𝑡 −3 + 1 . 4 𝑥 𝑡 −4 + 𝑒 𝑡 , 𝑒 𝑡 ∼ 𝑁(0 , 0 . 02) . 

ote that there are two a priori set lags (i.e. lags at 3 and 4) for this
xample. Pre-whitening was done for both series by fitting an ARIMA
1,1,0) model and using the residuals. Autocorrelogram of the residuals
howed correlation of one at lag 0 and zero everywhere else, indicating
hat the residuals were indeed white noise. The left and middle panels in
ig. 4 below show cross-correlograms without and with pre-whitening,
nd the right panel shows the Frobenius norm from the VGA-based
ethod at various lags. In the first correlogram, the maximum correla-

ion is at lag 3 ( 𝜌xy (3) = 0.967) with next two highest correlations at lag
 ( 𝜌xy (2) = 0.959) and lag 4 ( 𝜌xy (4) = 0.957) respectively. First of all,
here is ambiguity about the number of lags to be picked based on the
rst correlogram. If we decide to pick lags with the two largest correla-
ions, then we will correctly pick lag 3, but incorrectly pick lag 2. Note
hat in the model for y t the effect for lag 4 (1.4) was higher than the
ffect for lag 3; however the first correlogram ranked lag 4 at the third
lace. Cross-correlogram based on pre-whitened series (middle panel)
ives a more clear cut answer. Only correlations at lags 3 and 4 are sta-
istically different from zero, with the one at lag 4 prominently greater
han the one at lag 3. In this case, the correlogram identified the lags
orrectly. 

VGA-based method’s Frobenius norm is lowest at lag 4, and second
owest at lag 3. The norm value at lag 3 is relatively much closer to that
t lag 4, compared to the next nearest values. Thus, in this case also we
orrectly picked the a priori set lags. Note that VGA-based method iden-
ified the correct lag without pre-whitening, while the pre-whitening
tep was necessary for the cross-correlogram based method. 
. Simulations 

.1. Sample size 

We conducted Monte Carlo simulations to assess the performance
f the VGA-based method as we varied some of the parameters of
he two time series ts.a and ts.b considered in the second section. The
arameters that we considered were a ) the ratio of the amplitudes
etween the two simulated series ts.a and ts.b, b ) the variance for the
oise term ‘ rnorm(n, 0, ∗ ) ’ in the series ts.a (indicated by ∗ ) and
 ) the variance for the noise term ‘ rnorm(n, 0, ∗ ) ’ in the series
s.b . (Note that we did all the simulations in the R statistical software
nd above we borrowed from R language the term ‘ rnorm(n, 0,
d) ’ which stands for ‘n’ data points from the normal density with
ean 0 and standard deviation = ‘sd’.) For each simulation scenario

onsidered in this section (that is, for each set of the above parameters),
000 pairs of ts.a and ts.b were generated, and for each pair time lag
as assessed based on the proposed method and compared with the lag

hat was set a priori . The performance of the method was assessed based
n the percentage of times that the a priori lag was correctly identified.
he a priori lags that we considered for each scenario were 2, 5, 10 and
5; we assumed that in typical examples from hydrogeology, 2 will be
 small lag and 15 will be a very large lag. 

The reason for considering the ratio of amplitudes was that even
f two hydrogeological time series are roughly of the same shape with
nly a lag between them, their amplitudes (i.e. roughly their ’sizes’)
re often vastly different. For ts.a and ts.b used in the introductory
llustrative example in the second section, the ratio of their amplitudes
as 1/3. One of the questions that was addressed in our simulations was
hether our method was still good if we changed this ratio drastically,
.g. to 1/9. Another question that we thought should be addressed is
hat whether the proposed method works only for smooth periodic time
eries such as the ‘sine series’. Increasing the variance for the noise term
n ts.a makes it less like a ’sine series’. Finally, increasing the variance
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Table 1 

Performance of the VGA-adapted method when the ratio of amplitudes between 

ts.a and ts.b was 1/3, the noise term in ts.a was rnorm ( n , 0, 25) and the noise 

term for ts.b was rnorm ( n , 0, 5). 

a priori set lag 

2 5 10 15 

𝑛 = 25 94.0% 99.0% 93.0% 97.0% 

𝑛 = 50 100.0% 100.0% 100.0% 100.0% 

Table 2 

Performance of the VGA-adapted method when sample size is fixed at 𝑛 = 50 and 

various parameters are changed one at a time from the values for the illustrative 

example. 

a priori set lag 

2 5 10 15 

amplitude ratio = 1/9 71.0% 64.0% 64.0% 64.0% 

ts.a noise: rnorm ( n , 0, 50) 100.0% 100.0% 100.0% 100.0% 

ts.b noise: rnorm ( n , 0, 10) 94.0% 92.0% 91.0% 92.0% 
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Table 3 

Performance of the VGA-adapted method when the ratio of amplitudes between 

ts.a and ts.b was 1/9, the noise term in ts.a was rnorm ( n , 0, 25) and the noise 

term for ts.b was rnorm ( n , 0, 5). 

a priori set lag 

2 5 10 15 

𝑛 = 90 95.0% 91.0% 91.0% 93.0% 

𝑛 = 180 98.0% 100.0% 99.0% 100.0% 

𝑛 = 365 100.0% 100.0% 100.0% 100.0% 

Table 4 

Performance of the VGA-adapted method when the amplitude for the middle 

1∕3 rd section of ts.a was changed from 100 to 30. All the other parameters were 

retained exactly the same as in Table 3 , including the ratio of amplitudes be- 

tween ts.a and ts.b to be equal to 1/9. 

a priori set lag 

2 5 10 15 

𝑛 = 90 94.0% 93.0% 94.0% 95.0% 

𝑛 = 180 99.0% 100.0% 100.0% 100.0% 

𝑛 = 360 100.0% 100.0% 100.0% 100.0% 

a  

o
 

s  

a  

s  

w  

t  

t  

t  

f
 

m  

I  

s  

m  

t  

l  

s  

W  

t  

𝑡  

p  

a  

u  

o  

a  

i  

a
 

a  

w  

b  

w  

t  

r  

s  

t  

p  

a

f the noise term in ts.b makes the shape of ts.b quite different from
hat of ts.a , and by doing so in our simulations we also addressed the
erformance of the method in such scenarios. 

Our hypothesis was that if we changed the above-mentioned param-
ters to make the relationship between ts.a and ts.b less ideal than in
he illustrative example in the second section, the performance of the
ethod will be worse. In that sense, essentially the purpose of our sim-
lation was to see whether increasing the sample size will improve the
erformance in such ‘bad scenarios’, and if so, what would be a recom-
ended minimum sample size that would hedge against such scenarios.

n order to do that, we need a reference sample size; that is, a sample
ize for which the method’s performance was excellent when the rela-
ionship between ts.a and ts.b was reasonably good (by reasonably good
e mean roughly the same shape and size with only a lag in between

hem). In Table 1 above we present the performance of the method for
ample sizes 25 and 50, when the ratio of the amplitudes and the noise
erms were kept exactly the same as in the illustrative example. Since
able 1 shows that the performance was excellent for 𝑛 = 50 , we consider
0 as a good sample size choice if we have reasons to believe (may be by
isual inspection) that there is a nice relationship between ts.a and ts.b .

For the next set of simulations, we fixed the sample size to be 50, and
aried the above-mentioned parameters one at a time. We varied the
arameters one a time rather than simultaneously in order to achieve
 meaningful representation of two hydrogeological time series, one
ffecting the other. The results of this set of simulations are presented
n Table 2 . The first row presents the performance when the noise terms
re kept the same as in the introductory illustrative example, but the
atio of the amplitudes was reduced to 1/9. In this case the performance
f the method became drastically worse as seen from the table. In the
ext row, we present the results when the standard deviation for the
oise term for ts.a was changed to 50 (-for the illustrative example, it
as 25), but the other two parameters were kept the same. This was to

heck whether the performance became worse if the shape of both time
eries was not roughly like a sine series. Results from Table 2 show that
he performance is not affected in this case. These results give reasons
o believe that our initial choice of a sine series shape did not matter;
n other words, we would think that the method will perform well no
atter what the shapes of the two series are as long as both the series

re roughly of the same shape and size. The third row in Table 2 shows
he results when only the noise term for ts.b was changed. This would
orrespond to making the shape of ts.b quite different from that of
s.a . In this case, the performance is affected but not very much as the
ercentages in the third row are all still above 90%. Thus, based on
able 2 , the factors that affected the performance was the ratio of the
mplitudes and the noise term for ts.b and among these two, the effect
f the former was much more severe than the latter. 

Next, we checked whether the performance of the method corre-
ponding to the scenario in the first row in Table 2 (that is, ratio of
mplitudes equals 1/9 and noise terms for ts.a and ts.b kept exactly the
ame as in the illustrative example) improved with sample and if so,
hat could be a recommended minimum sample size. The results from

his set of simulations are presented in Table 3 . As noted in the table,
he performance increases very much when the sample size is increased
o 90, and is near perfect when the sample size is 180. The percentages
or all a priori lags are 100% when the sample size is 365. 

Finally, we used simulations to also check the performance of the
ethod when the amplitude of the time series varied ‘seasonally’.

t is well-known that the average accumulative precipitation varies
easonally; typically, for several consecutive months the average accu-
ulative precipitation is high and for several other consecutive months

he average accumulative precipitation is low, and similarly for water
evels. In order to mimic this scenario somewhat, we generated ts.a
eries using the same parameters as in Table 3 , except for the amplitude.
e divided the set of time points into three equal sets of consecutive

ime points so that, when e.g. 𝑛 = 90 , we have the initial 30 time points
 1 − 𝑡 30 , the middle 30 time points 𝑡 31 − 𝑡 60 and finally the last 30 time
oints 𝑡 61 − 𝑡 90 . For the first and last one-thirds of the time points an
mplitude of 100 and for the middle one-third an amplitude of 30 was
sed in the simulations for ts.a. ts.b was generated with 1/9 as the ratio
f amplitudes, as in Table 3 . The results for this new set of simulations
re presented in Table 4 . The results look very similar to that seen
n Table 3 , indicating that the additional seasonal variation of the
mplitudes did not have any effect on the performance of the method. 

The take home message from all the simulations results presented
bove is that if we are considering hydrogeological time series for
hich measurements were made daily, then an year’s worth of data will
e more than sufficient for the proposed method, although the method
ill work quite well even with 6 months’ worth of data. Visually, if

he two time series looks clearly to be one affecting the other and of
oughly the same shape and size, then even 2 months worth of data will
uffice. Note that in this section, we used the term sample size to refer
o the number of time points in the time series, and throughout the
aper, we implicitly assume that the data points in all the time series
re measured at equal time intervals. 
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Table 5 

Performance of the VGA-adapted method with imputation methods for missing 

values. The sample size was fixed to be 180. All the other parameters were re- 

tained exactly the same as in Table 3 , including the ratio of amplitudes between 

ts.a and ts.b to be equal to 1/9. 

a priori set lag No. missing LOCF Mean Imputation 

both TS only 1 TS both TS only 1 TS 

2 9 97.0% 99.0% 100.0% 100.0% 

18 92.0% 97.0% 95.0% 98.0% 

27 91.0% 96.0% 93.0% 98.0% 

36 84.0% 92.0% 82.0% 92.0% 

5 9 100.0% 99.0% 99.0% 100.0% 

18 94.0% 98.0% 94.0% 98.0% 

27 95.0% 95.0% 91.0% 97.0% 

36 86.0% 94.0% 90.0% 98.0% 

10 9 100.0% 99.0% 98.0% 99.0% 

18 97.0% 98.0% 97.0% 99.0% 

27 92.0% 96.0% 92.0% 97.0% 

36 77.0% 93.0% 81.0% 94.0% 

15 9 98.0% 100.0% 100.0% 100.0% 

18 99.0% 98.0% 98.0% 97.0% 

27 84.0% 96.0% 92.0% 98.0% 

36 79.0% 94.0% 88.0% 94.0% 
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.2. Missing values 

Missing values are common in all time series measurements for hy-
rogeological phenomena. In this section we assess, via simulations, the
erformance of the proposed method in the presence of missing values
or two different types of imputation methods - least observation carried
orward (LOCF) and mean imputation. In LOCF imputation, if a value is
issing at any time point, we carry forward the previous non-missing

alue; in mean value imputation we impute the average of the prior and
he subsequent non-missing values. The missing value mechanism that
e considered for our simulations was Missing Completely At Random

MCAR) which means that the missing values are missing exactly as
he name implies (completely at random). There is another commonly
onsidered (for example, in clinical studies) missing value mechanism -
issing At Random (MAR) - under which the missingness may depend

n the previously observed outcomes. Under this mechanism, both
OCF and mean imputation are known to be biased. But, we consider
hat the missingness in hydrogeological time series do not depend on
he previously observed outcomes, and hence the MAR assumption is
nrealistic, and thus we did not consider MAR for our simulations. As
 matter of fact, the missingness that we have seen for real hydrogeo-
ogical time series is as follows - for example, for a time series in which
easurements are made daily, non-missing measurements are seen for
 large chunk of consecutive time points (6 months to 2 years) followed
y a large chunk of data missing at a stretch (several weeks or months),
hich again is followed by a large chunk of non-missing data, and so
n. When a significant amount of data is missing for a large number of
onsecutive time points, none of the existing imputation methods will
ork very well. In such cases, the best strategy is to analyze separately

he large chunks of data with no missing values at all. Nevertheless, we
onducted the following simulations for hypothetical scenarios. 

In all the simulations reported in this section, we fixed the sample
ize to be 180, and we used the same noise terms for ts.a and ts.b as in
he illustrative example in the second section. The ratio of amplitudes
as set to be 1/9 as in the simulations for Table 3 . In order to adhere

o the MCAR mechanism we randomly set either 9 or 18 or 27 or 36
alues to be missing; 9, 18, 27 and 36 correspond to 5%, 10%, 15% and
0% of 180. Furthermore, we considered scenarios where the values
ere set to be missing for only one time series ( ts.a ) or for both. If it
ere set to be missing for both, then it was at the same time points for
oth, which we think is the more realistic scenario. 

The performance of the proposed method with both LOCF and mean
mputation was near perfect when only 5% of the values (that is, 9 out
f 180) were missing ( Table 5 ). This was true regardless of whether the
alues were missing for only one time series or for both, and also true
cross all a priori set lags, 2, 5, 10 and 15. When 10% of the values (that
s, 18 out of 180) were missing for only one time series, the method did
ery well under both LOCF and mean imputation for all lags. When 10%
f the values were missing for both time series, the performance was
till very good when the lags were large (10 or 15); when the lags were
mall (2 or 5), the performance with both imputation methods was still
ood but not as good as when the lags were large. For example, when
0% values were missing and when the lag was 2, the performance
ith LOCF was 97% and 92%, respectively, depending on whether the
alues were missing for only one time series or both; the corresponding
alues for lag 10, on the other hand, were even better: 98% and 97%. 

With 15% missing values (27 out of 180), the performance was still
ood (that is, in the range 90% − 97% ) with LOCF and mean imputation,
or lags 2, 5, and 10, irrespective of whether it was missing for only one
r for both time series (although, of course, if it was missing only for
ne time series, it was better). However, when the a priori set lag was
5, the performance with LOCF was weak (84%), when 15% values
ere missing for both time series; it was still good (96%) with LOCF
hen only one time series had 15% missing values, and with mean

mputation also (92% and 98%). With 20% missing values the method
orked well under both types of imputations and for all lags, only when
ne time series had missing values. When both time series had 20%
issing values, the performance of LOCF was not good with small lags

84% for lag 2 and 86% for lag 5) and got worse for larger lags (77%
or lag 10 and 79% for lag 15). The performance with mean imputation
as slightly better (82%, 90%, 81% and 88%, for lags 2, 5, 10 and 15,

espectively) but still not quite up to the mark. 
In summary, based on the above simulation results, we consider it

cceptable to use the proposed method in conjunction with either of
he imputation methods if it is only 5% values missing for only one
ime series or for both. With 6 − 15% values missing, the imputation
ethods give good results only if it is missing for one time series.
ith about 20% of the values missing for both time series, it is

efinitely not recommended to use the proposed method with either
f the imputations although it may be somewhat acceptable if it is
issing for only one time series. Also, in general, we observed that

he performance with mean imputation was slightly better except for
ne or two scenarios. If the statistical practitioner has a preference of
ne method over the other, it may still be recommended to use both
or the proposed method, at least as a sensitivity analysis. Finally, we
mphasize again the point made in the beginning of the section, that
f large chunks of data are missing at a stretch then the imputation
ethods are not likely to work; in such cases, it is better to focus the

nalysis on other chunks of data with no or very sparse missing values.

.3. Multivariate simulations 

In all the simulations done so far, the first time series was simulated
sing a univariate model and the second time series was generated
y obtaining a lagged copy of the first series and then adding random
oise to it. A better strategy, technically, is to generate both the time
eries from a multivariate model and shift the second series to set
 lag between the two series a priori . In this subsection we present
esults from such simulation strategies. Multivariate time series that
e considered were all generated from vector ARMA processes which

nclude vector AR processes and vector MA processes as special cases.
he general form for a n -vector ARMA ( p, q ) process z t is given by 

 𝑡 + 𝐴 1 𝑧 𝑡 −1 + …𝐴 𝑝 𝑧 𝑡 − 𝑝 = 𝜀 𝑡 + 𝐵 1 𝜀 𝑡 −1 + …+ 𝐵 𝑞 𝜀 𝑡 − 𝑞 , 

here A i ’s and B j ’s are n × n matrices 𝑖 = 1 , … , 𝑝 and 𝑗 = 1 , … , 𝑞 and
 t ’s and 𝜀 t ’s are vectors with n -elements. Elements of 𝜀 t are white noise
rocesses (i.e. serially uncorrelated across time); however, at each time
oint there might be correlation among the elements. In this paper,
ince we consider only bivariate time series, n was set equal to 2 for all
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Table 6 

Performance of the three methods under different multivariate models. Sample sizes of 100 

and 500, and a priori set lags of 3 and 7 were considered. 

Sample size, 𝑛 = 100 Sample size, 𝑛 = 500 

Model lag VGA CCF1 CCF2 Model lag VGA CCF1 CCF2 

M1 Δ = 3 99.7% 100% 100% M1 Δ = 3 100% 100% 100% 

Δ = 7 100% 100% 100% Δ = 7 100% 100% 100% 

M2 Δ = 3 96.1% 93.9% 95.6% M2 Δ = 3 99.6% 100% 100% 

Δ = 7 95.3% 94.1% 95.0% Δ = 7 99.7% 100% 100% 

M3 Δ = 3 91.9% 98.7% 100% M3 Δ = 3 100% 100% 100% 

Δ = 7 91.8% 98.4% 100% Δ = 7 100% 100% 100% 

M4 Δ = 3 81.2% 42.9% 100% M4 Δ = 3 100% 52.7% 100% 

Δ = 7 82.2% 42.2% 100% Δ = 7 100% 63.6% 100% 
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he simulations in this subsection. All the matrices that we considered
ere diagonal; however we did include a correlation among the
lements within each 𝜀 t . Following are the models that we considered: 

(M1): 𝑥 𝑡 = 0 . 65 𝑥 𝑡 −1 − 0 . 38 𝜀 (1) 
𝑡 −1 + 𝜀 

(1) 
𝑡 

, 𝑦 𝑡 = 0 . 95 𝑦 𝑡 −1 − 0 . 62 𝜀 (2) 
𝑡 −1 + 𝜀 

(2) 
𝑡 
;

𝑦 𝑡 −Δ = 𝑥 𝑡 , or in matrix notation 𝑧 𝑡 + 𝐴𝑧 𝑡 −1 = 𝜀 𝑡 + 𝐵𝜀 𝑡 −1 
where 𝑧 𝑡 = [ 𝑥 𝑡 , 𝑦 𝑡 ] ′, 𝜀 𝑡 = [ 𝜀 (1) 

𝑡 
, 𝜀 

(2) 
𝑡 
] ′,𝐴 = diag (−0 . 65 , −0 . 95) ,

𝐵 = diag (−0 . 38 , −0 . 62) . 
(M2): 𝑥 𝑡 = 0 . 40 𝑥 𝑡 −1 + 1 . 20 𝑥 𝑡 −2 +0 . 05 𝑥 𝑡 −3 −0 . 35 𝑥 𝑡 −4 +𝜀 

(1) 
𝑡 

, 𝑦 𝑡 =0 . 30 𝑦 𝑡 −1
+ 0 . 85 𝑦 𝑡 −2 − 0 . 04 𝑦 𝑡 −3 − 0 . 45 𝑦 𝑡 −4 + 𝜀 

(2) 
𝑡 
; 𝑦 𝑡 −Δ = 𝑥 𝑡 . In matrix nota-

tion, this will be 𝑧 𝑡 − 𝐴 1 𝑧 𝑡 −1 − 𝐴 2 𝑧 𝑡 −2 − 𝐴 3 𝑧 𝑡 −3 − 𝐴 4 𝑧 𝑡 −4 = 𝜀 𝑡
where 𝐴 1 = diag (−0 . 40 , −0 . 30) , 𝐴 2 = diag (−1 . 20 , −0 . 85) ,
𝐴 3 = diag (−0 . 05 , 0 . 04) and 𝐴 4 = diag (0 . 35 , 0 . 45) . 

(M3): 𝑥 𝑡 = 0 . 40 𝜀 (1) 
𝑡 −1 + 𝜀 

(1) 
𝑡 

, 𝑦 𝑡 = −0 . 40 𝑦 𝑡 −1 + 𝜀 
(2) 
𝑡 
; 𝑦 𝑡 −Δ = 𝑥 𝑡 . In ma-

trix notation 𝑧 𝑡 + 𝐴𝑧 𝑡 −1 = 𝜀 𝑡 + 𝐵𝜀 𝑡 −1 where 𝐴 = diag (0 , 0 . 40) ,
𝐵 = diag (0 . 40 , 0) . 

(M4): 𝑥 𝑡 = 0 . 95 𝑥 𝑡 −1 + 𝜀 
(1) 
𝑡 

, 𝑦 𝑡 = 0 . 95 𝑦 𝑡 −1 − 0 . 95 𝜀 (2) 
𝑡 −1 + 𝜀 

(2) 
𝑡 
; 𝑦 𝑡 −Δ = 𝑥 𝑡 .

In matrix notation 𝑧 𝑡 + 𝐴𝑧 𝑡 −1 = 𝜀 𝑡 + 𝐵𝜀 𝑡 −1 where 𝐴 =
diag (−0 . 95 , −0 . 95) , 𝐵 = diag (0 , −0 . 95) . 

The pair of time series within M1 were same as the best fitted
odels for the respective time series (i.e. rainfall and water level fluctu-

tion) from the Lake Okeechobee data and analysis presented below in
ection 5 . Thus, model M1 was included primarily to assess the
alidity of the methods for the Lake Okeechobee data analysis and
ts conclusions. The correlation 𝜌 among the elements of 𝜀 t used for
enerating all the above bivariate series was 0.6. For each model, we
onsidered separate simulations with lags 3 and 7 set a priori . For most
ydrogeological time series pairs, a lag of 3 would be considered as
mall and a lag of 7 considered large. Bivariate time series based on
odels 1, 3 and 4 were generated using the ‘varma’ command within

he ‘multiwave’ package in R ( Achard and Gannaz, 2019 ). For bivariate
ime series based on model 2, ‘mAr.sim’ command within the ‘mAr’
ackage ( Barbosa, 2015 ) in R was used. The results from the simulations
tudies corresponding to various scenarios are presented in Table 6
elow. The results are based on 1000 iterations for each simulation
cenario. CCF1 and CCF2 in Table 6 correspond to cross-correlation
ethod without and with pre-processing step, respectively. 

In all scenarios, there was no substantial difference between the
ccuracies obtained in the lag 3 setting compared to that with lag 7. All
he methods worked very well for time series pairs generated from M1,
ven with a sample size of 100. This justifies our use of the methods,
articularly the VGA-based method, for the analysis of Lake Okeechobee
ata. For simulations under M2, all three methods were comparable for
oth sample sizes. The accuracy of all three methods were not perfect
but only approximately 95%) when the sample size was 100, but it
eached 100% or near 100% with a sample size of 500. For the next two
odels, only CCF2 performed very well for a sample size of 100. Under
3, the accuracy of VGA-based method was approximately 92% and

hat of CCF1 was approximately 98.5%. Although the performances of
GA-based method and CCF1 were not optimal with the smaller sample
ize, they improved substantially when a sample size of 500 was used.
nder M4, the accuracy of VGA-based method was approximately 81%
nd that of CCF1 was approximately 43% when the a priori lag was
. However, with a sample size of 500, the performance of VGA-based
mproved substantially to 100%. The performance of CCF1 method
lso improved, but not as much as for the VGA method. The results
or the simulations based on M3 and M4 bring out a limitation of the
GA based method - that its performance is dependent on sample
ize. 

M3 and M4 are different from M1 and M2 in the following sense. The
air of time series in M1 and M2 were both from the same type of time
eries models (ARMA(1,1) for M1 and AR(4) for M2) although the coeffi-
ients differed. The two time series within M3 were from different types
MA(1) for the first time series and AR(1) for the second time series).
he two time series within M4 were also from different types (AR(1)
or the first time series and ARMA(1,1) for the second time series). The
bove set of simulations seems to suggest that when the underlying pair
f time series under consideration are of two different types, then VGA-
dapted method performs very well only with large sample sizes. Thus, if
here are reasons to believe that the underlying time series are from two
ifferent types of models, then the VGA-based method presented in this
aper should be used with caution, especially for smaller sample sizes. 

Next we present analysis of lag between rainfall and water level fluc-
uation in Lake Okeechobee to illustrate the methods further. 

. Lake Okeechobee data 

For this analysis, we selected daily water level and rainfall data from
wo monitoring stations located on Lake Okeechobee. The Lake and
ydrologic features connected to it are one of the most studied and mon-
tored watershed systems in United States. Because of its significance
n regional flood management and water supply and considering it is a
ital fresh water resource for Florida, the Lake and its surrounding wet-
ands have a suite of monitoring stations that collect water level, water
uality, meteorological and flow data throughout the year. The Lake
ystem is part of the Greater Everglades watershed that stretches from
he Kissimmee River to Florida Bay with significant flows occurring
hrough the Everglades. The SFWMD and ACOE takes extreme measures
o constantly monitor the lake levels and maintain it at optimal levels
aking into consideration public’s safety, water demands, and the health
f flora and fauna in the estuaries downgradient from the Lake. 

Daily rainfall and water level data used for this analysis was
ollected between January 1, 2000 and December 31, 2018 (19 years).
ainfall data was highly skewed; so, a fourth root transformation was
one before all analyses. There were no missing values for water levels,
nd less than 0.5% values missing for rainfall data. Since the percent
f missing values was very small, we used imputation based on least
bservation carried forward (LOCF) before conducting the analysis.
he primary goal of the analysis was to detect the time lag(s) between
aily rainfall and daily changes in water level. Note that we used daily
hanges in water level rather than daily water level itself because
ake water levels are more complex and tied to many hydrogeological
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Fig. 5. Daily rainfall data averaged across 19 years (2000–2018) for months of June, July, August and September are shown in the top panel. Daily water level 

change in Lake Okeechobee averaged across 19 years for the same months are shown in the middle panel. Frobenius norm from the VGA based analysis are shown 

in the bottom panel. 
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actors in addition to rainfall such as evaporation, surface water and
roundwater inflow and outflows. 

The number of days of rainfall for each month from January to
ecember, averaged across all 19 years were 5.1, 4.8, 6.2, 5.4, 8.1,
4.2, 13.5, 16.1, 13.2, 7.1, 5.4, and 5.7 respectively. The average
umber of days with rainfall was substantially higher for the months
f June, July, August and September; these four months represent the
wet ” season for the region. Further, we estimated the average annual
ainfall for each of the 19 years and noticed that 2014 was the wettest
ear. The first analysis below is mainly for illustration purposes only -
e applied our proposed method to the wet season (June through
eptember) of the wettest year (2014). 

The lowest value of the Frobenius norm was at lag 4 (norm value
06), the second lowest value at lag 6 (norm value 724). The third and
ourth lowest values were at lags 15 and 0 (norm values were close
o each other: 742 and 746). It is interesting to note that our analysis
ndicates a primary lag of about 4 or 6 days and a secondary lag of
bout 15 days. The primary lag may be a reflection of immediate water
evel response to rainfall events occurring in and around the Lake while
he secondary lag may be a response to rainfall occurring in the Lake
icinity and an increase in inflows via the lake inlet streams caused
ue to rainfall events occurring upstream from the Lake. Although not
rominent, there is also some indication of an immediate effect shown
y the lag at 0. 

The above analysis was conducted for the wettest year. We repeated
he analysis after averaging the data across all 19 years. Averaging the
ata will be more statistically appropriate when the results are used
or prediction. Again, this analysis was done for illustrative purposes
nly. The averaged data for rainfall and water level change are shown
n the upper panel and middle panels of Fig. 5 , respectively. The
robenius norm from VGA based analysis for different lags are plotted
n the bottom panel of Fig. 5 . The lowest value of the norm was at
ag 4, followed by lags at 0 and 6 (norm values 862, 864 and 870,
espectively). The fourth ranked lag was at lag 15 (norm value 876).
t is interesting to note that the top four lags were same as that for
he wettest year, although in the analysis for the averaged data the
mmediate effect (i.e. lag at 0) became more prominent. 

We also conducted cross-correlogram analysis for detecting lag.
n ARMA model fit with one AR coefficient and one MA coefficient

i.e. ARIMA(1,0,1)) yielded white noise residuals for time series. (See
ppendix Fig. A1 ). The coefficients obtained with this ARMA(1,1) fit
ere the same as the ones used in the two series in the model M1 for
ultivariate simulations above. AR alone or MA alone did not produce
hite noise residuals. The CCF based on the residuals from the ARMA
odels are plotted in Fig. 6 below. The significant lags detected in this

ase are at 0 and 1. Thus CCF based analysis detects only immediate
ffects due to rainfall. 

One of the primary reasons for detecting lags is to use them for
rediction based on, for example, a time series regression. In order to
ompare the predictive performance of the lags obtained via VGA versus
hose obtained via CCF, we fitted time series regressions with daily
ater level change as the dependent variable, no intercept term and

agged rainfall data as independent variables. In order to accommodate
ag terms for rainfall, we used only water level data for months of
uly, August and September in the regressions. To be precise, if June
ater level data was included and lag 15 (for example) for rainfall
as modelled in the regression, then that would have required rainfall
ata from the month of May, which was not used in the original VGA
r CCF analyses. Hence the prediction analysis was restricted to water
evel data from July, August and September (total 92 days). Having no
ntercept is justified as follows. A regression with no intercept term, in
he current context, interprets as ‘zero rainfall implies zero change in
ater level’, or more technically correctly - ‘when there is no rainfall

n the recent past, the only change in water level is due to random
ariation’. For each regression, fitted values and 95% confidence
ntervals for fitted values were calculated. Accuracy for each regression
as determined as the number of actual water-level-change values that
ere within the 95% confidence interval band of the fitted values. 
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Fig. 6. Cross-correlation function of pre-whitened rainfall and water-level 

change series from the top panels in Fig. 5 . 
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A time series regression with no intercept and VGA-based lags (that
s, lags at 4, 0 and 6) predicted water level change for 20 out of 92
ays accurately within statistical error (i.e. within the 95% confidence
ntervals of fitted values). A similar time series regression with CCF-
ased lags (that is, lags at 0 and 1) showed slight improvement (- 23
ut of 92 days) but was comparable to the predictive performance of
GA-based lags. When the fourth ranked lag from VGA analysis (that is,

ag at 15) was also included in a regression with the first three lags, the
egression predicted 28 out of 92 days correctly, a slight improvement
ig. 7. Water level change and predicted water level change for the months of July, 

right panel). The black solid lines in each panel shows the original water level chang

5% confidence intervals for the predicted values. (For interpretation of the referen

his article.) 
rom CCF-lags based prediction. Including lagged rainfall only in a
odel will not predict optimally water level change as can be seen from

he predictive accuracy values of the above regressions. The purpose of
he above analysis to compare the performance between the VGA-based
nd CCF-based methods, and we do see that they are comparable. 

In order to predict daily changes in water level better we have to
onsider variables other than lagged variables. Including an indicator
ariable for month and another indicator variable for the week along
ith lagged rainfall data improved the predictive performance dramati-

ally. Month and week indicators with the top three VGA lags predicted
1 out of 92 days (77%) within statistical error while as the indicator
ariables along with CCF lags predicted 68 days (74%). Accuracy
alues reported for both regressions above are considered reasonably
ood. In order to add more flexibility to modeling (that is, in order
o capture rapid fluctuations), we also ran regressions with a four-day
ndicator variable instead of the week indicator variable. Month indi-
ator variable was retained as in the previous regressions. A regression
ith month and 4-day indicator variables and the three VGA-based lags
redicted 80 days (87%) correctly, while as the same indicator vari-
bles with CCF lags predicted 78 days (85%) correctly. The predictive
ccuracy for the above models are very good. The fitted values and 95%
onfidence intervals from the above models are plotted in Fig. 7 below.

In summary, the predictive performance of VGA-based lags are
omparable to CCF-based lags in this example. Lagged rainfall data by
tself does not have very good predictive performance for daily changes
n water level data. Other variables such as month and week or four-day
ndicator variables have much more stronger predictive capability. The
est prediction accuracy (87%) was obtained when VGA based lags
ere included with month and four-day indicator variables. 

. Discussion 

Quantifying time lags between two hydrogeological time series is
f significance in many modeling contexts. There are several examples
n hydrogeological literature where one time series is affected by
August and September based on the VGA method (left panel) and CCF method 

e and blue solid lines the predicted values. The blue dotted lines represent the 

ces to colour in this figure legend, the reader is referred to the web version of 
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nother after a time lag. For example, it is often hypothesized that time
ag between net precipitation and water level changes in a seepage
ake is significantly different from a drainage lake. Seepage lakes are
ydraulically isolated from surface water features and primarily fed
y groundwater and direct precipitation. Drainage lakes are typically
onnected to a network of streams and rivers ( Wisconsin Department
f Natural Resources, 2009 ). Another example is in the study of karst
ystems where the pair of hydrological time series could be discharge-
ischarge or rainfall-discharge or water level-discharge. For instance,
ailly-Comte et al Bailey-Comte et al. (2008) studied the karst/river

nteractions during the flooding of Coulazou river in southern France,
nd detected time lags that explained the influence of the river on the
ater-level elevation in a karst aquifer. 

Yet another example is the relationship between precipitation and
ater levels of a shallow well in an unconfined aquifer versus water

evels in a relatively deeper well in a semi-confined aquifer. This
elationship is particularly important to water resource managers and
roundwater modelers who need to accurately quantify groundwater
echarge into aquifers, for developing water-supply-plans for sustain-
ble use of aquifers. Groundwater recharge, defined as entry of water
nto the saturated zone, is influenced by a wide variety of factors
ncluding vegetation, topography, geology, climate, and soils ( Dripps,
003; Dripps et al., 2006 ). Groundwater recharge, which is a small
ercentage of the precipitation that eventually reaches the water table,
s one of the most difficult parameters to quantify. This is because
rocesses such as evaporation, transpiration and infiltration through
nsaturated subsurface must first be estimated to determine the amount
f water lost after a rainfall event. Often times, groundwater models
re developed by estimating the groundwater recharge using empirical
elationships or as a percentage of precipitation. It is a common prac-
ice to use groundwater recharge as a calibration parameter, meaning
he recharge value that provides the best calibration to the model is
elected as representative for the watershed simulated. For temporal
imulations, the lag time between a rainfall event and groundwater
echarge into deeper aquifers are often ignored. 

Currently used methods in hydrogeological literature to detect time
ags between a pair of time series is based on simple visual inspection
r on cross-correlograms. The latter approach, although substantially
etter than the former, if used without pre-whitening could lead to
mbiguous results as exhibited in a simulated example in the paper. A
etter way to conduct cross-correlogram analysis is under the transfer
unction framework. In this paper, we briefly reviewed the transfer
unction framework, and showed for the above-mentioned simulated
xample how cross-correlogram under this framework (i.e. after
re-whitening) gives the correct results without ambiguity. However,
re-whitening the series requires careful model fitting in order to obtain
he residuals as white noise. There could be examples where even the
est fit models may not completely yield white noise as residuals. In
his paper, we present an alternate method to detect time lags based on
he visibility graph algorithm (VGA) which is a method developed by
hysicists to convert a time series into a mathematical graph. VGA has
ecome highly popular in various scientific disciplines and have found
ide applications. The method for time lag detection proposed in this
aper is based on a simple extension of VGA. In the simulated example
entioned above, we showed how the VGA based method detects the

ag correctly and unambiguously without having to do a pre-whitening
rocess as in the transfer function framework. However, simulations
ased on multivariate models revealed that when the pair of time series
re from two different types of underlying models, the new approach
erforms well only for large sample sizes. 

. Conclusions 

The primary objective of the paper was to demonstrate that the VGA
ethod is a useful tool that can be applied on hydrogeological data to

alculate lags between time series. Understanding the hydrogeological
ycle and water balance within any watershed has practical value for
ater resource managers from an operational and planning perspective.
e selected two time series data that are fundamental to hydrogeolog-

cal science to demonstrate the application of the VGA method, one is
ainfall which is the primary source of recharge for a watershed, and
he other is water levels which dictate how much water can be used
or human consumption or needs to be released for flood management.

e applied the methods discussed in this paper to detect the time lags
etween rainfall and water level fluctuation in Lake Okkechobee in
lorida. VGA method detected lags at days 4, 0, 6 and 15, with the most
rominent lag at day 4. CCF based method detected lags at days 0 and
. One of the purposes of detecting lags is to use them in a regression
odel for prediction. A regression analysis which included month and

our-day indicator variable in addition to the lags for rainfall data
redicted water level fluctuations with 87% accuracy when VGA lags
ere used and with 85% accuracy when CCF lags were used. Thus

he prediction accuracies based on both approaches were comparable
n this case. Both VGA and CCF detected an immediate effect due to
ainfall (lag at 0). However, from a scientific perspective, lags at 4 or
 days and at 15 days are important considering they are reflective of
nflows from lake inlet streams. Only VGA based method detected these
onger lags. Multivariate simulations study based on the fitted models
or the two time series related to Lake Okeechobee validated the use
f the proposed methods for this particular analysis, since both time
eries were from the same type of models. Predictive accuracy based on
egression models also justify the use of the proposed method for Lake
keechobee analysis. However, for datasets where the two time series
re from two completely different type of underlying models, larger
ample sizes are necessary for the VGA-based approach presented in this
aper. 
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ppendix 

ig. A1. ACF of residuals from ARMA(1,1) fits for (a) rainfall series after 4th

nalysis. The plots look very similar to the ACF of white noise series, justifying 

1 for multivariate simulations. AR-coefficient = 0.65 and MA-coefficient = −
ater level change series. 

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.advwatres.2019.103429 . 
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